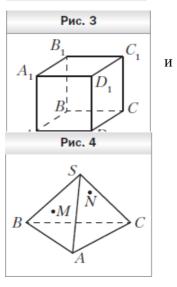

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ 10 класс

Контрольная работа №1 "Аксиомы стереометрии. Сечения" 1 вариант

- 1. На рисунке 1 изображён куб $ABCDA_1B_1C_1D_1$. Укажите прямую пересечения плоскостей A_1DC и BB_1C_1 .
- 2. Даны точки A, B и C такие, что AB = 12 см, BC = 19 см, AC = 7 см. Сколько плоскостей можно провести через точки A, B и C? Ответ обоснуйте.
- 3. Плоскость α проходит через вершины A и D параллелограмма ABCD и точку O пересечения его диагоналей. Докажите, что прямаяBC лежит в плоскости α .
- 4. Точки M и N принадлежат соответственно граням SAB и SAC пирамиды SABC (рис. 2). Постройте точку пересечения прямой MN с плоскостью ABC.
- 5. Постройте сечение пирамиды SABC плоскостью, проходящей через точки D, E и F, принадлежащие соответственно рёбрам AB, BC и SC, причём прямые DE и AC не параллельны.


2 вариант

- 1. На рисунке 3 изображён куб $ABCDA_1B_1C_1D_1$. Укажите прямую пересечения плоскостей A_1BC и ABB_1 .
- 2. Даны точки M, N и K такие, что MN=23 см, MK=14 см, NK=13 см. Сколько плоскостей можно провести через точки M, N K? Ответ обоснуйте.
- 3. Точки D и E середины сторон AB и BC треугольника ABC соответственно. Плоскость α проходит через точки B, D и E. Докажите, что прямаяAC лежит в плоскости α .
- 4. Точки M и N принадлежат соответственно граням SAB и SBC пирамиды SABC (рис. 4). Постройте точку пересечения прямой MN с плоскостью ABC.
- 5. Постройте сечение призмы $ABCA_1B_1C_1$ плоскостью, проходящей через точки M, K и N, принадлежащие соответственно рёбрам AB, BC и CC_1 , причём прямые MK и AC не параллельны.

Проценты	Отметка
90%-100%	5
75%-89%	4
50%-74%	3
49% и менее	2

Рис. 1 $A_1 \longrightarrow D_1$ $B_1 \longrightarrow D_1$ CРис. 2 C

Контрольная работа№2 "Взаимное расположение прямых и плоскостей в пространстве"

1 вариант

- 1. Даны две параллельные плоскости α и β и не лежащая между ними точка P. Две прямые, проходящие через точку P, пересекают ближнюю к точке P плоскость α в точках A_1 и A_2 , а дальнюю плоскость β в точках B_1 и B_2 . Найдите длину отрезка B_1B_2 , если A_1A_2 =6см и PA_1 : A_1B_1 =3:8.
- 2. Перекладина, длиной 5м своими концами лежит на двух вертикальных столбах высотой 7м и 4м. Каково расстояние между основаниями столбов?
- 3. Из вершины Д квадрата ABCД со стороной 2см к его плоскости проведён перпендикуляр $\Pi K = 2\sqrt{3}\sqrt{3}$ см. Найдите площадь треугольника ABK.

2 вариант

- 1. Даны две параллельные плоскости α и β и не лежащая между ними точка K. Две прямые, проходящие через точку K, пересекают ближнюю к точке K плоскость α в точках A_1 и A_2 , а дальнюю плоскость β в точках B_1 и B_2 . Найдите длину отрезка B_1B_2 , если A_1A_2 =10см и A_1K : A_1B_1 =2:3.
- 2. Какую длину должна иметь перекладина, чтобы её можно было положить на две вертикальные опоры высотой 9м и 5м, поставленные на расстояние 3м одна от другой.
- 3. Из вершины В прямоугольника АВСД со сторонами ВС=3см и АВ=6см к его плоскости проведён перпендикуляр ВМ= $3\sqrt{3}\sqrt{3}$ см. Найдите площадь треугольника ДСМ.

Критерии оценивания

Проценты	Отметка
91%-100%	5
75%-90%	4
50%-74%	3
49% и менее	2

Контрольная работа№3 "Углы и расстояния" 1 вариант

- 1. Основанием прямоугольного параллелепипеда служит квадрат; диагональ параллелепипеда равна $3\sqrt{6}$ см, а его измерения относятся как 3:3:6. Найдите: а) измерения параллелепипеда;
- б) синус угла между диагональю параллелепипеда и плоскостью его основания.
- 2. Плоскости равнобедренных треугольников ABD и ABC с общим основанием перпендикулярны. Найдите CD, если AD=10 см, AB=16 см, ∠CAB=45°.
- 3. Сторона квадрата *MNKL* равна с. Через сторону *ML* проведена плоскость α на расстоянии $\frac{c}{}$ от точки N.

2

- а) Найдите расстояние от точки N до плоскости α .
- б) Покажите на рисунке линейный угол двугранного угла NMLF, F∈α.
- 4. ПрямаяСХ проходит через вершину прямоугольника XYZK и перпендикулярна его сторонам XY и XK. Докажите перпендикулярность плоскостей: СXY и XYZ.

2 вариант

- 1. ПрямаяFM проходит через вершину прямоугольника MNKL и перпендикулярна его сторонам MN и ML. Докажите перпендикулярность плоскостей: FML и MNK.
- 2. Плоскости равнобедренных треугольников ABD и ABC с общим основанием перпендикулярны. Найдите CD, если AD= $\sqrt{31}$ см, AB=6 см, \angle ACB=60°.
- 3. Основанием прямоугольного параллелепипеда служит квадрат; диагональ параллелепипеда равна $2\sqrt{6}$ см, а его измерения относятся как 1:1:2. Найдите:
- а) измерения параллелепипеда;
- б) синус угла между диагональю параллелепипеда и плоскостью его основания.
- 4. Сторона квадрата ABCD равна a. Через сторону AD проведена плоскость α на расстоянии a от точки B.

2

- а) Найдите расстояние от точкиC до плоскости α .
- б) Покажите на рисунке линейный угол двугранного угла *BADM*, $M \in \alpha$.

Критерии оценивания

Проценты	Отметка
90%-100%	5
75%-89%	4
50%-74%	3
49% и менее	2

Контрольная работа №4 "Многогранники. Векторы в пространстве"

1 вариант

- 1. Боковое ребро прямой четырёхугольной призмы равно 6 см, её основание прямоугольник, одна из сторон которого равна 12 см, а диагональ 13 см. Найдите площадь полной поверхности призмы.
- 2. Сторона основания правильной треугольной пирамиды равна 6 см, а высота пирамиды $\sqrt{13}$ см. Найдите:
- 1) боковое ребро пирамиды;
- 2) площадь боковой поверхности пирамиды.
- 3. Найдите площадь боковой поверхности правильной треугольной усечённой пирамиды, стороны оснований которой равны 10 см и 18 см, а боковое ребро 5 см.
- 4. Основанием треугольной пирамиды является равнобедренный треугольник с основанием a и углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите:
- 1) площадь боковой поверхности пирамиды;
- 2) высоту пирамиды.
- 5. В наклонной треугольной призме, боковое ребро которой равно 6 см, проведено сечение, перпендикулярное боковому ребру. Это сечение является равнобедренным треугольником, боковая сторона которого равна $2\sqrt{3}$ см, а угол при вершине 120° . Найдите площадь боковой поверхности призмы.

2 вариант

- 1. Боковое ребро прямой треугольной призмы равно 12 см, её основание прямоугольный треугольник, катеты которого равны 3 см и 4 см. Найдите площадь полной поверхности призмы.
- 2. Сторона осн<u>ова</u>ния правильной четырёхугольной пирамиды равна 2 см, а высота пирамиды $\sqrt{15}$ см. Найдите:
- 1) боковое ребро пирамиды;
- 2) площадь боковой поверхности пирамиды.
- 3. Найдите площадь боковой поверхности правильной четырёхугольной усечённой пирамиды, стороны оснований которой равны 18 см и 34 см, а боковое ребро 17 см.
- 4. Основанием треугольной пирамиды является равнобедренный треугольник с боковой стороной *а* и углом α при основании. Все двугранные углы при основании пирамиды равны β. Найдите:
- 1) площадь боковой поверхности пирамиды;
- 2) высоту пирамиды.
- 5. В наклонной треугольной призме, боковое ребро которой равно 8 см, проведено сечение, перпендикулярное боковому ребру. Это сечение является равнобедренным треугольником, боковая сторона которого равна 4 см, а угол при вершине 90° . Найдите площадь боковой поверхности призмы.

Критерии оценивания

Проценты	Отметка
90%-100%	5
75%-89%	4
50%-74%	3
49% и менее	2

Итоговая контрольная работа 1 вариант

1. Боковое ребро прямой четырёхугольной призмы равно 6 см, её основание — прямоугольник, одна из сторон которого равна 12 см, а диагональ — 13 см. Найдите площадь полной поверхности призмы.

- 2. Сторона основания правильной треугольной пирамиды равна 6 см, а высота пирамиды $\sqrt{13}$ см. Найлите:
- 1) боковое ребро пирамиды;
- 2) площадь боковой поверхности пирамиды.
- 3. Найдите площадь боковой поверхности правильной треугольной усечённой пирамиды, стороны оснований которой равны 10 см и 18 см, а боковое ребро 5 см.
- 4. Основанием треугольной пирамиды является равнобедренный треугольник с основанием a и углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите:
- 1) площадь боковой поверхности пирамиды;
- 2) высоту пирамиды.
- 5. В наклонной треугольной призме, боковое ребро которой равно 6 см, проведено сечение, перпендикулярное боковому ребру. Это сечение является равнобедренным треугольником, боковая сторона которого равна $2\sqrt{3}$ см, а угол при вершине 120° . Найдите площадь боковой поверхности призмы.

2 вариант

- 1. Боковое ребро прямой треугольной призмы равно 12 см, её основание прямоугольный треугольник, катеты которого равны 3 см и 4 см. Найдите площадь полной поверхности призмы.
- 2. Сторона основания правильной четырёхугольной пирамиды равна 2 см, а высота пирамиды
- √15 см. Найдите:
- 1) боковое ребро пирамиды;
- 2) площадь боковой поверхности пирамиды.
- 3. Найдите площадь боковой поверхности правильной четырёхугольной усечённой пирамиды, стороны оснований которой равны 18 см и 34 см, а боковое ребро 17 см.
- 4. Основанием треугольной пирамиды является равнобедренный треугольник с боковой стороной a и углом α при основании. Все двугранные углы при основании пирамиды равны β . Найдите:
- 1) площадь боковой поверхности пирамиды;
- 2) высоту пирамиды.
- 5. В наклонной треугольной призме, боковое ребро которой равно 8 см, проведено сечение, перпендикулярное боковому ребру. Это сечение является равнобедренным треугольником, боковая сторона которого равна 4 см, а угол при вершине 90°. Найдите площадь боковой поверхности призмы.

Критерии оценивания

Проценты	Отметка
90%-100%	5
75%-89%	4
50%-74%	3
49% и менее	2

Итоговая контрольная работа по геометрии

Вариант І

- 1. Найдите площадь полной поверхности правильной четырехугольной пирамиды, стороны основания которой 8, а высота равна 3.
- 2. Основание AC равнобедренного треугольника ABC лежит в плоскости α . Найдите расстояние от точки B до плоскости α , если AB = 20, AC = 24, а двугранный угол между плоскостью треугольника и плоскостью α равен 30°.
- 3. Основание прямой призмы ABCA1B1C1 прямоугольный треугольник, катеты BC и AC которого равны $2\sqrt{6}$. Плоскость ABC1 наклонена к плоскости основания под углом 30градусов. Найдите площадь сечения.

Итоговая контрольная работа по геометрии

Вариант II

- 1. Найдите площадь полной поверхности правильной четырехугольной пирамиды, стороны основания которой 12, а высота равна 8.
- 2. Катет AB прямоугольного треугольника ABC (\angle B = 90°) лежит в плоскости α . Найдите расстояние от точки C до плоскости α , если AC = 17, AB = 15, а двугранный угол между плоскостью треугольника и плоскостью α равен 45°.
- 3. Основание прямой призмы ABCA1B1C1 прямоугольный треугольник, катеты BC и AC которого равны $4\sqrt{6}$. Плоскость ABC1 наклонена к плоскости основания под углом 30градусов. Найдите площадь сечения.

Контрольная работа № 1по теме «Тела вращения»

1 вариант

- 1. Радиус основания цилиндра равен 5 см, а высота цилиндра равна 6 см. Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4 см от нее.
- 2. Радиус шара равен 17 см. Найдите площадь сечения шара, удаленного от его центра на 15 см.
- 3. Радиус основания конуса равен *3 м*, а высота *4 м*. Найдите образующую и площадь осевого сечения.

2 вариант

- 1. Высота цилиндра $\delta \partial M$, радиус основания $\delta \partial M$. Цилиндр пересечен плоскостью параллельно оси так, что в сечении получился квадрат. Найдите расстояние от этого сечения до оси цилиндра.
- 2. Радиус сферы равен $15 \, cm$. Найдите длину окружности сечения, удаленного от центра сферы на $12 \, cm$.
- 3. Образующая конуса l наклонена к плоскости основания под углом в 30^{0} . Найдите высоту конуса и площадь осевого сечения.

Контрольная работа № 2 по теме « Объёмы тел»

1 вариант

- 1. Образующая конуса равна *60 см*, высота *30 см*. Найдите объём конуса.
- 2. Основание прямой призмы прямоугольный треугольник с катетом $6\ cm$ и острым углом 45^0 . Объем призмы равен $108\ cm^3$. Найдите площадь полной поверхности призмы.
- 3. Осевым сечением цилиндра является квадрат, диагональ которого равна $8\sqrt{2}\ cm$. Найдите объем цилиндра.
- 4. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол, равный 60^{0} . Найдите отношение объёмов конуса и шара.
- 5. Объём цилиндра равен 96π с m^3 , площадь его осевого сечения 48с m^2 . Найдите площадь сферы, описанной около цилиндра.

2 вариант

- 1. Высота цилиндра $\delta \, \partial M$, радиус основания $5 \, \partial M$. Цилиндр пересечен плоскостью параллельно оси так, что в сечении получился квадрат. Найдите расстояние от этого сечения до оси цилиндра.
- 2. Радиус сферы равен *15 см*. Найдите длину окружности сечения, удаленного от центра сферы на *12 см*.
- 3. Образующая конуса l наклонена к плоскости основания под углом в 30^{0} . Найдите высоту конуса и площадь осевого сечения.
- 4. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объёмов шара и цилиндра.
- 5. В конус, осевое сечение которого есть правильный треугольник, вписан шар.

Найдите отношение площади сферы к площади боковой поверхности конуса.

Контрольная работа №2 по теме «Метод координат в пространстве. Движение»

1 вариант

1. Даны векторы \vec{a} , \vec{e} и \vec{c} , причем: $\vec{a} = 6\vec{i} - 8\vec{k}$, $|\vec{e}| = 1$, $\vec{c} \{4;1;m\}$, $(\vec{a}\,\hat{;}\,\vec{e}) = 60^{\circ}$.

Найти:

- а) $\vec{a} \cdot \vec{e}$; б) значение m, при котором $\vec{a} \perp \vec{c}$.
- 2. Найдите угол между прямыми *AB* и *CD*, если *A*(*3*; -*1*; *3*), *B*(*3*; -*2*; *2*), *C*(*2*; *2*; *3*) и *D*(*1*; *2*; *2*).
- 3. Дан правильный тетраэдр DABC с ребром a. При симметрии относительно плоскости ABC точка D перешла в точку D_I . Найдите DD_I .
 - 4. Вершины $_{\Delta}$ АВС имеют координаты:A(-2;0;1), B(-1;2;3), C(8;-4;9). Найдите координаты вектора \overrightarrow{BM} , если BM медиана $_{\Delta}$ АВС.

2 вариант

- 1. Даны векторы \vec{a} , \vec{s} и \vec{c} , причем: $\vec{a}=4\vec{j}-3\vec{k}$, $|\vec{s}|=\sqrt{2}$, $\vec{c}\left\{2;m;8\right\}$, $(\vec{a}\,\hat{;}\,\vec{s}\,)=45^{\circ}$. Найти:
- а) $\vec{a} \cdot \vec{e}$; б) значение *m*, при котором $\vec{a} \perp \vec{c}$.
- 2. Найдите угол между прямыми AB и CD, если A(1; 1; 2), B(0; 1; 1), C(2; -2; 2) и D(2; -3; 1).
- 3. Дан правильный тетраэдр DABC с ребром a. При симметрии относительно точки D плоскость ABC перешла в плоскость $A_1B_1C_1$. Найдите расстояние между этими плоскостями.
- 4. Вершины $_{\Delta}$ ABC имеют координаты: A (-1; 2; 3), B (1; 0; 4), C (3; -2; 1). Найдите координаты вектора \overrightarrow{AM} , если AM медиана $_{\Delta}$ ABC.

Итоговая контрольная работа

Вариант 1

- **1.** Образующая конуса равна 10 см, а радиус основания 6 см. Найдите объем конуса.
- **2.** Объем шара $\frac{32}{3}\pi$ см³. Найдите радиус шара.
- **3.** Сторона основания правильной четырехугольной призмы 5см, а боковое ребро 12см. Вычислите объем призмы.
- **4.** Осевое сечение цилиндра квадрат со стороной 6 см. Найдите объем цилиндра.
- **5.** Осевое сечение конуса равносторонний треугольник со стороной 6 см. Найдите объем конуса.
- **6.** Медиана, проведенная к гипотенузе прямоугольного треугольника равна 17 см, а один из катетов 16 см. Найти радиус окружности, вписанной в треугольник.

Вариант 2

- 1. Образующая конуса равна 13 см, а высота 12 см. Найдите объем конуса.
- 2. Площадь поверхности шара равна 144π см². Найти объём данного шара.
- 3. Сторона основания правильной треугольной призмы 6см, а боковое ребро 10см. Вычислите объем призмы.
- 4. Осевое сечение цилиндра квадрат со стороной 8 см. Найдите объем цилиндра.
- 5. Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90° . Вычислите объем конуса, деленный на π .
- 6. Медиана, проведенная к гипотенузе прямоугольного треугольника равна 13 см, а один из катетов равен 24 см. Найти радиус окружности, вписанной в треугольник.
- 7. Диагональ осевого сечения цилиндра равна

- 7. Диагональ осевого сечения цилиндра равна 12 см и наклонена к плоскости его основания под углом 60° . Найдите площадь боковой поверхности цилиндра.
- **8.** Объем конуса равен 16π см³, а его высота 3см. Найдите площадь боковой поверхности конуса.
- 9. Основание прямой призмы прямоугольный треугольник с гипотенузой 10см и острым углом 30°. Диагональ боковой грани, содержащей катет противолежащий данному углу, равна 13 см. Найдите объем призмы.
- $24\sqrt{3}$ см и наклонена к плоскости его основания под углом 30° . Найдите площадь боковой поверхности цилиндра.
- 8. Площадь боковой поверхности конуса равна $20\pi\text{ см}^2$, а его образующая 5 см. Найдите объем конуса.
- 9. Основание прямой призмы прямоугольный треугольник с катетом 3см и прилежащим углом 60^{0} . Диагональ боковой грани, содержащей гипотенузу треугольника, 10см. Найдите объем призмы.

Γ-11	Контрольная работа № 1 «Координаты точки и координаты вектора»	Γ-11	Контрольная работа № 1 «Координаты точки и координаты вектора»	
ВАРИАНТ 1		ВАРИАНТ 2		
1. Найдите координаты вектора \overrightarrow{AB} , если A (5; $-$ 1; 3), B (2; $-$ 2; 4).		1. Найдите координаты вектора \overrightarrow{CD} , если C (6; 3; – 2), D (2; 4; – 5).		
2. Даны векторы \vec{b} {3;1;-2}, \vec{c} {1;4;-3}. Найдите $ 2\vec{b}-\vec{c} $.		2. Даны векторы \vec{a} {5;-1;2}, \vec{b} {3;2;-4}. Найдите $ \vec{a}-2\vec{b} $.		
3. Изобразите систему координат $Oxyz$ и постройте точку M (1; $-$ 2; $-$ 4). Найдите расстояние от этой точки до координатных плоскостей.		3. Изобразите систему координат $Oxyz$ и постройте точку N (-2 ; -3 ; 4) Найдите расстояние от этой точки до координатных плоскостей.		
Γ – 11	Контрольная работа № 2 «Скалярное произведение векторов. Движения»	Γ-11	Контрольная работа № 2 «Скалярное произведение векторов. Движения»	

ВАРИАНТ 1

- 1. Какой угол образуют единичные векторы \vec{a} и \vec{b} , если известно, что векторы $\vec{a} + 2\vec{b}$ и $5\vec{a} 4\vec{b}$ взаимно перпендикулярны?
- 2. В кубе $ABCDA_{1}B_{1}C_{1}D_{1}$ длина ребра равна 1, M центр грани $DD_{1}C_{1}C$. Используя метод координат, найдите:
 - 1) Угол между прямыми AM и B_1D .
 - 2) Расстояние между серединами отрезков AM и B_1D .
- 3. Даны две точки: A, лежащая на оси ординат, и B (1; 0; 1). Прямая AB составляет с плоскостью OXZ угол 30°. Найдите координаты точки A.
- 4*. Найдите координаты вектора \vec{a} , коллинеарного вектору $\vec{b}(6;8;-7,5)$ и образующего тупой угол с координатным вектором \vec{j} , если $|\vec{a}| = 50$.

ВАРИАНТ 2

- 1. Даны точки A (-1; 2; 1), <math>B (3; 0; 1), <math>C (2; -1; 0), <math>D (2; 1; 2). Найдите:
 - 1) Угол между векторами \overrightarrow{AB} и \overrightarrow{CD} .
 - 2) Расстояние между серединами отрезков AB и CD.
- 2. Основанием прямой призмы $ABCA_1B_1C_1$ служит равнобедренный треугольник ABC. $\angle ACB = 120^\circ$, $AC = CB = BB_1$. Используя векторы, найдите угол между прямыми AB и CB_1 .
- 3. Даны две точки: A, лежащая в плоскости OXY, и B (1; 1; 1), причем абсцисса точки A равна ее ординате. Прямая AB составляет с плоскостью OZY угол 30° . Найдите координаты точки A.
- 4*. Даны векторы $\vec{a}(7;0;0)$ и $\vec{b}(0;0;3)$. Найдите множество точек M, для каждой из которых выполняются условия $\overrightarrow{OM} \cdot \vec{a} = 0$ и $\overrightarrow{OM} \cdot \vec{b} = 0$, где O начало координат.

Γ – 11	Контрольная работа № 2	Γ-11	Контрольная работа № 2	
1 11	«Скалярное произведение векторов. Движения»	1 11	«Скалярное произведение векторов. Движения»	
	ВАРИАНТ 3		ВАРИАНТ 4	
1. Даны векторы \vec{a} и \vec{b} , $ \vec{a} = 2$, $ \vec{b} = \sqrt{2}$, $ \vec{a} = 135^\circ$. Найдите $ \vec{a} - 2\vec{b} $.		1. Даны т	гочки E (1; $-$ 2; 2), F (3; 0; 2), K (0; $-$ 2; 3), T (2; 4; 1). Найдите:	
		1) Уго	1) Угол между векторами \overrightarrow{EF} и \overrightarrow{KT} .	
2. В кубе $ABCDA_1B_1C_1D_1$ длина ребра равна 1, M – середина ребра A_1D_1 .		2) Pacc	тояние между серединами отрезков <i>EF</i> и <i>KT</i> .	
Используя метод координат, найдите:		2. В правильной треугольной призме $ABCA_1B_1C_1$ все ребра равны		
1) Угол между прямыми $A_I C$ и $C_I M$.		между собой Используя векторы, найдите угол между прямыми		
2) Расстояние между серединами отрезков A_1C и C_1M .		A_1C и AB .		
3. Даны две	е точки: A , лежащая на оси аппликат, и B (2; 2; 0). Прямая AB	3. Даны д	ве точки: M , лежащая в плоскости OXZ , и $P(1;2;1)$, причем	
составляет с плоскостью OXY угол 60° . Найдите координаты точки A .		абсцисса точки M равна ее аппликате. Прямая PM составляет с		
4* . Векто	р \vec{b} , коллинеарный вектору $\vec{a}(8;-10;13)$ составляет с	плоско	остью XOY угол 30°. Найдите координаты точки M .	
положите	ельным направлением оси OZ острый угол, $\left \vec{b} \right = \sqrt{37}$. Найдите		векторы $\vec{n}(0;-2;0)$ и $\vec{b}(0;0;5)$. Найдите множество точек E ,	
	→ ·	для ка	аждой из которых выполнено условие $\overrightarrow{OE} \cdot \overrightarrow{b} = 0$ и $\overrightarrow{OE} \cdot \overrightarrow{c} = 0$,	
координа	ты вектора b .	где <i>О</i>	– начало координат.	

Γ – 11	Контрольная работа № 3
	«Цилиндр, конус и шар»

$\Gamma - 11$

Контрольная работа № 3 «Цилиндр, конус и шар»

ВАРИАНТ 1

- 1. Прямоугольная трапеция с углом 45° вращается вокруг прямой, содержащей большее основание. Найдите площадь поверхности тела вращения, если основания трапеции равны 3 и 5.
- 2. В шар радиуса R вписан конус, у которого образующая составляет с плоскостью основания угол ϕ
 - 1) Найдите площадь боковой поверхности конуса.
 - 2) Если $\phi = 30^\circ$, то найдите наибольшую возможную площадь сечения, проходящего через вершину конуса.
- 3* Сфера $x^2 + y^2 + (z-1)^2 = 4$ пересекает оси координат в точках A, B и C, A точка пересечения с осью OX, B с осью OY, а C с осью OZ (координаты этих точек положительны). Найдите угол между плоскостями ABC и z=0.

ВАРИАНТ 2

- 1. В цилиндре проведена плоскость, параллельная оси и отсекающая от окружности основания дугу 90°. Диагональ сечения равна 10 и удалена от оси на расстояние, равное 4. Найдите площадь боковой поверхности цилиндра.
- 2. В правильной треугольной пирамиде боковые грани наклонены к основанию под углом 60°. В эту пирамиду вписан шар радиуса R.
 - 1) Найдите площадь боковой поверхности пирамиды.
 - 2) Найдите длину окружности, по которой поверхность шара касается боковых граней пирамиды.
- 3* Из точки M (— 7; 3; 4), проведена касательная к сфере $x^2+y^2+z^2-2x-4y-27=0$. Найдите длину касательной от точки M до точки касания.

 Контрольная работа № 3 «Цилиндр, конус и шар» 	Г — 11 Контрольная работа № 3 « Цилиндр, конус и шар »	
ВАРИАНТ 3	ВАРИАНТ 4	
 Ромб <i>ADCD</i> со стороной <i>а</i> и углом <i>A</i>, равным 60°, вращается вокруг прямой, проходящей через вершину <i>C</i> и перпендикулярной диагонали <i>AC</i>. Найдите площадь поверхности тела вращения. Сторона основания правильной треугольной пирамиды равна <i>a</i>, а боковые ребра наклонены к плоскости основания под углом α. Найдите площадь описанной около пирамиды сферы. Если α = 30°, то найдите угол между радиусом сферы, проведенным в одну из вершин основания, и плоскостью основания. Сфера (x-1)² + y² + z² = 5 пересекает ось ординат в точке <i>A</i> (y < 0), через точку <i>M</i> (1; 1; 0) проведена прямая, параллельная оси <i>OZ</i> и пересекающая сферу в точке <i>B</i> (x > 0). Найдите угол между прямой <i>AB</i> и плоскость <i>XOY</i>. 	собой Используя векторы, найдите угол между прямыми A_1C и AB . 3. Даны две точки: M , лежащая в плоскости OXZ , и P (1; 2; 1), причем абсцисса точки M равна ее аппликате. Прямая PM составляет с плоскостью XOY угол 30° . Найдите координаты точки M . 4*. Даны векторы $\vec{n}(0;-2;0)$ и $\vec{b}(0;0;5)$. Найдите множество точек E , для	
Г — 11 Контрольная работа № 4 «Объемы тел»	 Контрольная работа № 4 «Объемы тел» 	
ВАРИАНТ 1	ВАРИАНТ 2	
1. В правильной треугольной пирамиде боковые грани наклонены к плоскости основания под углом 60°. Расстояние от центра основания до	1. В правильной четырехугольной призме $ABCDA_{1}B_{1}C_{1}D_{1}$ через концы	
 боковой грани равно 2√3. Найдите объем пирамиды. 2. В цилиндре проведена плоскость, параллельная его оси, которая отсекает от окружности основания дугу 2α. Диагональ полученного сечения составляет с осью цилиндра угол φ и удалена от нее на расстояние, равное d. Найдите объем цилиндра. 	 трех ребер, исходящих из вершины <i>C</i>, проведена плоскость на расстоянии 4√2 о этой вершины и составляющая с плоскостью основания угол 45°. Найдите объем призмы. 2. В конус через его вершину под углом φ к плоскости основания проведена плоскость, отсекающая от окружности основания дугу 2α. Радиус основания конуса равен <i>R</i>. Найдите объем конуса. 	
боковой грани равно $2\sqrt{3}$. Найдите объем пирамиды. 2. В цилиндре проведена плоскость, параллельная его оси, которая отсекает от окружности основания дугу 2α . Диагональ полученного сечения составляет с осью цилиндра угол φ и удалена от нее на расстояние,	 расстоянии 4√2 о этой вершины и составляющая с плоскостью основания угол 45°. Найдите объем призмы. 2. В конус через его вершину под углом φ к плоскости основания проведена плоскость, отсекающая от окружности основания дугу 2α. 	

 Г – 11 Контрольная работа № 5 «Объем шара» 	 Г – 11 Контрольная работа № 5 «Объем шара»
ВАРИАНТ 1	ВАРИАНТ 2
 Чему равен объем шара, описанного около куба с ребром 2? Шар радиуса R пересечен плоскостью, отстоящей от его центра на расстоянии R/2. а) В каком отношении эта плоскость делит объем шара? б) Какую часть всей сферической поверхности составляет меньший из получившихся сферических сегментов? 3* В правильной треугольной пирамиде боковые грани наклонены к плоскости основания под углом 60°. Расстояние от центра основания до боковой грани равно 2√3. В пирамиду вписан шар, касающийся боковой поверхности пирамиды по некоторой окружности. Плоскость, которой принадлежит эта окружность, делит шар на две части. Найдите объем меньшей из эти частей. 	 В правильной четырехугольной призме ABCDA₁B₁C₁D₁ через концы трех ребер, исходящих из вершины C, проведена плоскость на расстоянии 4√2 о этой вершины и составляющая с плоскостью основания угол 45°. Найдите объем призмы. В конус через его вершину под углом φ к плоскости основания проведена плоскость, отсекающая от окружности основания дугу 2α. Радиус основания конуса равен R. Найдите объем конуса. В правильной четырехугольной призме ABCDA₁B₁C₁D₁ через концы трех ребер, исходящих из вершины C, проведена плоскость на расстоянии 4√2 о этой вершины и составляющая с плоскостью основания угол 45°. В призме проведена плоскость, перпендикулярная диагонали призмы и делящая ее в отношении 1 : Указанная плоскость делит описанный около призмы шар на две части. Найдите объем меньшей из этих частей.